If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-42x+144=0
a = 2; b = -42; c = +144;
Δ = b2-4ac
Δ = -422-4·2·144
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{17}}{2*2}=\frac{42-6\sqrt{17}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{17}}{2*2}=\frac{42+6\sqrt{17}}{4} $
| 62+2(4x-12)/x=27 | | (1/4v)-(3/7)=(2/7v)-(1/4) | | v/6+8=-7.36 | | 5(r+3)=2(4-r) | | 9=n+13 | | X+.36x=50 | | 3a^2-50a+48=0 | | 3(x+4)=2(x–5) | | 6x+4+73=180 | | 15=2/3y+8 | | 2.2=-8y+27.8 | | 3p-9=5p+7 | | 10x-1=2x+11 | | 5x-56=18 | | 10x-1=x+11 | | -1.1+w/4=13.9 | | y/31.25+6=11 | | 4x-13=3x+5 | | 5-11/3s=5/6s+4 | | 1/6x+1=x | | 5x-3/2=x+1/6 | | 6(x+2)+(4x-3)=50 | | 5x-3/2=5-x/4 | | 17.1=2.1+6y | | 2x-5=1/2x+4 | | 23-x=11+x | | 4y+4=5y-3 | | 7x+2=4x+(-10) | | 5x+1=x/2-1 | | 29d-14d=105 | | 5y-11(-1/8)=7 | | 8r+7=4R+15 |